
Serial Interfacing Using SPI and I2C
Lab Report

Kendall Lui and Mary Florek
2/1/18

1. INTRODUCTION
There are many different protocols that
peripherals can use to communicate with
devices. Two of these protocols are the I2C
and the SPI interfaces. The I2C consists of
two wires for clock and data; while SPI uses a
minimum of four wires: clock,data out, data in,
and chip select. Because SPI has more
signals to use, it is generally a faster method
of communication. This lab was designed to
help understand the use of these two
protocols in order to control an accelerometer
and OLED display.

2. GOALS
The tasks given us for this lab were
threefold. First, we were to learn how to use
the SPI interface to communicate with the
OLED, first by communicating between two
devices and secondly by portraying various
geometric shapes on the OLED screen. Our
second task was to understand the I2C
protocol in order to communicate with the
on-board accelerometer. As the
accelerometer was tilted, we could see the x
and y axis data displayed on TeraTerm. Our
final task was to combine these new skills to
display a ball on the OLED screen and
move the ball based on the tilt of the
accelerometer. Saleae logic waveforms
were recorded for verification at each step.

3. METHODS
The first part of the lab made use of the SPI
demo project provided in the CC3200 sdk
examples. This program demonstrated SPI

communication between two Master and
Slave SPI devices. It allowed us to transfer a
message between two launchpads, one
acted as a slave and the other as a master.
After understanding how the SPI protocol
worked, we were tasked at implementing an
SPI protocol to communicate with an OLED
display. Most of the code was provided
except for the direct SPI write data/command
functions. In order to implement these we
had to understand the data sheets that were
provided for the display.
The implementation for the writeCommand
and readCommand functions was simple, we
used a non-standard chip select pin, pin 62,
to enable and disable SPI communication by
simply pulling the pin LOW or HIGH. In order
to determine whether the SPI write was a
command or data we had another pin, pin
63, that went LOW to assert a command or
HIGH to assert data. After chip select and
data/command mode was determined we
called on the SPIDataPut() function which
wrote the data to the SPI line on the MOSI,
pin 63. We then had to clear the buffer so a
SPIDataGet() was called and after that
completed we brought the chip select line
back to high to disable the SPI
communication.
Next, we tested the functions were working
by calling Adafruit_Init() which initialized the
OLED display. The final step was to call on
the various functions to display the various
test cases. This required that we look at the
various functions and their comments to
appropriately set up colors and positions.

The most challenging part was implementing
the character set print out since we had to
calculate when the text would roll over onto
the next line. The OLED display was then
able to run through various sequences to
show that the display was fully working.
The second part of the lab was fairly simple,
as we were able to use the the I2C project
demo from the CC3200 project example
folder. After importing and building this
project, we opened Tera Term and used the
readreg command to view the data
generated as the accelerometer was tilted
one way or the other. The x values were
stored in register 0x3, the y in 0x5 and z in
0x7, so we were able to specify exactly
which locations we wished to view. We
viewed the code and found that a write was
called then a read. This was to request a
specific register that was to be read. The
read function read the data from I2C. This
data would be helpful in the last part of this
lab to help us implement a rolling ball based
on accelerometer data.
The final task would combine what we had
learned about the SPI and the I2C protocols
to control a rolling ball on the OLED display.
Using the provided fillCircle function, we
were able to draw a small ball about 4 pixels
wide in the center of the screen. We then
implemented a while loop that read the
current tilt of the accelerometer and added it
to the current x and y values of the ball’s
location. We had to make sure we were
casting the numbers appropriately so that
the 2’s complement data remained
negative. In this way, the ball would move
across the screen incrementally as the
accelerometer was tilted. Of course, we also
had to take boundary conditions into
account so that the ball wouldn’t roll off the
screen. Knowing the screen was 128 pixels
square, and the ball was 4 pixels round, we

tested every x and y value to see if it had
exceeded 124 or went below 4. If it did, we
would simply re-assign the value to 124 or 4
so the ball would remain in place against
the imaginary wall until tilted the other
direction.
During the process we used a Salae Logic
analyzer to inspect the SPI data signal of
the OLED interface. The attached
screenshot shows the first writeData(0x12)
found in the Adafruit_Init function. The
data/command pin is pulled up and the data
written is shown to be 0x12. In addition, we
were able to analyze the I2C signal as
shown in the attached image. It
demonstrates the initial write to register 0x3
and then a read from the actual register with
a response of 0x2.

4. DISCUSSION
The most challenging part of this lab was
understanding what needed to be
implemented to get the OLED working.
Once, we looked at the data sheet we found
the timing diagram that demonstrates the
SPI communication of the device with the
various additional device specific lines. On
the first implementation we did not realize
we needed to call the SPIDataGet function
before the next write was called.
Additionally, there is a small quirk that
requires us to call the internal SPIEnable
function in order to allow the SPIDataPut
function to work properly even though we
were using a different chip select pin. After
we discovered this the code worked
perfectly.
One of the main issues that we had with the
display was its low refresh rate clearing the
entire screen required around 1 second. As
a result when we implemented the rolling
ball we found the ball to flicker a lot in order
to try and reduce this we modified our code

to have the erase ball screen and display
the ball at new location functions called
immediately after one another. We have
thought of several other ways to help
reduce the flicker on the screen. We could
attempt to only erase and draw portions of
the non overlapping ball rather than erasing
the entire ball. Additionally, we could modify
the way the drawing and write functions
work and reduce the number of times the
chip select pins were pulled high and low.
An important tool that we learned to use in
this lab was the Salae logic analyzer. This
simple tool allowed us to directly see the
signals that were actually coming out of our
launchpad. It was especially helpful when
we discovered that the write data command
for SPI was not working because we could
see that the data was simply not being sent
over the bus. For I2C we had very little
issues but the Salae Logic analyzer allowed
us to actually see what was going on and
helped us identify different parts of the
signals automatically.

5. CONCLUSION
We were able to successfully implement all
three tasks for this lab. We learned a great
deal about the differences in implementation
of the two protocols in question, and how to
use them to control both the OLED display
and the accelerometer. Our Saleae
waveforms confirmed our understanding of
the material.

