
IR Remote Control Text Messaging 
Laboratory 3 - EEC 172 

Kendall Lui and Mary Florek 
2/15/18 

 
 

INTRODUCTION 
A common technology used to communicate between two 
devices is an infrared (IR) receiver module. We used this 
receiver in this lab to send text messages from one OLED 
screen to another. Because the receiver works on infrared 
light, a direct line-of-sight is needed for it to work properly. 
As the infrared signal is detected on the receiver, we were 
able to use interrupts to help us decode the signal. Interrupts 
are signals emitted by the software or hardware in order to 
call attention to a certain event. The data from the interrupt is 
sent to the Interrupt Handler, which then takes action 
towards resolving the interrupt. Interrupts are a crucial 
subject for embedded system engineers as they are used to 
help systems successfully communicate based on external 
conditions.  
 
GOALS 
This lab is designed to further the understanding of 
embedded systems by the creation of an IR Decoder and 
Text Messaging app. The first step is understanding how 
IR remotes work and the protocols that are used to transmit 
data. The implementation of these projects give exposure 
to interrupts, timers, and UART communication 
configuration. In addition, this project required 
understanding how to interface interrupts with polling to 
create a reliable and responsive system. From a design 
standpoint, these projects required a detailed design phase 
to make each subsystem interact with each other 
seamlessly. 
 
METHODS 
The first step to implement the IR Remote Control Texting 
application was analyzing the IR signals of the remote 
code 1156. A 100-ohm resistor and 100 micro-farad 
capacitor were connected to the receiver to help reduce 
noise from the power source. The Saleae Logic analyzer 
was used with the Vishay IR receiver to display the signal 
produced by IR remote. It was determined that the 1156 

signal was of the NEC IR transmission protocol as defined 
in the supporting documentation provided for the lab. 
 
As can be seen in the screenshots attached at the end of 
this report, there is a start signal with a low for 9ms 
followed by a high with 4.5ms. The NEC code makes use 
of pulse distance modulation with a pulse width of 
1.125ms representing a 1 and 2.25ms representing a 0 
measured from rising edge to rising edge. The first 8 bits 
are the address code used to identify the source of the data. 
The next 8 bits are the inverted address which can be used 
to detect corruption. After the address the next 16 bits are 
the data and the inverted data. 
 
The address was determined to be 0x02. After pressing 
several of the buttons and manually reading the data we 
found that keys 0-9 were directly mapped to data output of 
their corresponding value with the least significant bit 
transmitted first. Additionally, the data for the enter key is 
0x17 and the data for the mute key is 0x10. 
 
After understanding the encoding for the transmission, the 
next step was to implement a decoder for the CC3200 
launchpad using interrupts. The interrupt was set to 
interrupt on the rising edge input from the Vishay receiver. 
On the interrupt if a timer was set the next rising edge 
interrupt would then store the elapsed time into a circular 
buffer. 
 
The buffer was then processed by two functions. The first 
function, parseIRData(), converts the pulses into binary. It 
checks for the leading 4.5 ms and then converts the next 32 
pulse times into bits using a simple shift operator. The data 
is then validated using the function getIRData() by 
checking the address and appropriate inverted data. The 
data was then printed to the UART terminal with special 
cases printing for the “ENTER”  and “MUTE”  keys. 
 
With the IR decoder setup the next step was writing a 
texting program. The IR remote code was further 



developed to detect multiple key presses to implement 
keypad typing. The implementation simply tracks the 
number of times the button is pressed in a row. A 2D array 
is used to convert this count to a desired character. A timer 
interrupt is started each time the button is pressed to detect 
whether the current character should be stored. If the timer 
expires the code is interrupted and the character is stored 
and the cursor advanced. 
 
After developing the typing tool, communication using 
UART1 was implemented to send messages to another 
board. Using the UART API provided by CC3200 the port 
was set up with a baud rate of 115200.  Additionally, 
interrupt is registered to detect when a message is 
received. When this interrupt occurs it reads each character 
from the UART1 port. 
 
A texting library was created called TextManager that 
managed the text message display, text message uart 
communication, and text message composer. When a 
character is first typed the IR library calls on 
placeCharacter() and when the character needs to be stored 
it calls advanceCursor(). A sendMessage() is called when 
enter is pressed to transmit over the UART1 buffer. 
 
Finally, the OLED display was implemented within the 
TextManager library. A blinking cursor was created using 
a timer interrupt which simply changed the color of a null 
character from white to black. When a button is pressed 
the display shows the current character highlighted to aid 
users to see what they are typing. Clearing the display 
simply pastes null characters over the previously written 
text. 
 
DISCUSSION 
The first part of this lab, decoding the IR data was 
challenging since at first it was unclear what was being 
recorded. After reading the documents and looking closer 
at the signal it became clear that the signal was NEC. Once 
this was clear the specifications were very straightforward. 
 
Implementing the IR receiver required setting up timers 
and interrupts. This proved to be challenging because there 
are a lot of different parameters that can be set on a timer 

from period to one shot timers. The timers give the number 
of clock ticks which can be used with the clock frequency 
to determine the actual time in seconds. Reading the 
documentation helped with understanding how the timers 
worked in detail with information that can be used in 
future projects. The IR implementation also accounts for a 
20% error in the timing since the real world will not get 
the exact timing as specified by the protocol. 
 
The last issue was implementing the UART1 
configuration. This took a lot of time since documentation 
for UART1 is not widely available. Most resources 
demonstrated the use of UART0 and the different 
configuration parameters were poorly documented. 
Additionally, there was a problem with the complete 
UART data not being sent over. This is due to the way the 
FIFO buffer and interrupts were set up. In order to fix this 
problem the FIFO buffer was turned off. This solved the 
problem because the interrupt was only being received at a 
certain level the FIFO became full not at every time a 
message was received. 
 
After implementing most of the features, the code was split 
up into IRDecoder and TextManager library files. This 
allows for more organized code and keeps things relatively 
separate in their functions. Cleaning up the code was 
performed to minimize the amount of time an interrupt 
service routine needed to handle the code. SPI is slow so 
this would cause the system to react slowly whenever it 
was being written to. Fixing this required using interrupts 
to set flags and store data. These were then polled in order 
to make a more responsive system. 
 
 
CONCLUSION 
We were ultimately able to decode the IR data using the 
NEC signal specifications. Implementing a text messaging 
system was non-trivial but ultimately successful as well. 
We accomplished our initial goal of learning the protocols 
used in IR transmission, and the concept of interrupts.  
 
Binary Representation of 0:  
 



 
Binary Representation of 1:  

 
Binary Representation of 2:  

 
Binary Representation of 3:  

 
Binary Representation of 4:  

 
Binary Representation of 5:  

 
Binary Representation of 6:  

 
Binary Representation of 7:  



 
Binary Representation of 8:  

 
Binary Representation of 9:  

 
Binary Representation of “Enter”:  

 
Binary Representation of “Mute”:  

 
 
 
UART representation of “HELLO” with the Async Serial protocol analyzer  
 

 
 
 
 
 
 
 
 
/* 



 * IRDecoder.c 
 * 
 *  Created on: Feb 5, 2018 
 * Author: Kendall 
 */ 
// Driverlib includes 
#include "hw_types.h" 
#include "hw_ints.h" 
#include "hw_memmap.h" 
#include "hw_common_reg.h" 
#include "interrupt.h" 
#include "hw_apps_rcm.h" 
#include "prcm.h" 
#include "rom.h" 
#include "rom_map.h" 
#include "prcm.h" 
#include "gpio.h" 
#include "utils.h" 
#include "spi.h" 
 
 
// Common interface includes 
#include "timer.h" 
#include "timer_if.h" 
 
#include "TextManager.h" 
#include "IRDecoder.h" 
 
#define BUFFER_SIZE 100 
//Pulse Count Upper and Lower limits to account for timing inaccuracies 
#define LOWER_START 288000 // 20% margin 
#define UPPER_START 432000 // 20% margin 
#define LOWER_ZERO  72000  // 20% margin 
#define UPPER_ZERO  108000 // 20% margin 
#define LOWER_ONE   144000 // 20% margin 
#define UPPER_ONE   216000 // 20% margin 
#define ADDRESS 0xbf40 
 
// Private Variables 
volatile int bufferCount = 0; 
volatile long int buffer[BUFFER_SIZE]; 
int currentBufferLocation = 0; 
 
// Parsing Buffer Data into int 
unsigned int IRData = 0; //actual IRdata 
char startSignal = 0; // Signals that the bit data is starting 
char bitCount = 0; // Counts to 32 
char prevData = '\0'; 
 
 



char alpha[10][4] = { 
 {' ',' ',' ',' '}, 
 {'.','!','?',','}, 
 {'A', 'B', 'C','C'}, 
 {'D', 'E', 'F','F'}, 
 {'G', 'H', 'I','I'}, 
 {'J', 'K', 'L','L'}, 
 {'M', 'N', 'O','O'}, 
 {'P', 'Q', 'R', 'S'}, 
 {'T', 'U', 'V', 'V'}, 
 {'W', 'X', 'Y', 'Z'}, 
 }; 
 
// State Flags 
int consecutivePressFlag = 0; 
 
static void RisingIntHandler(void); 
void DecodeIR(void); 
void ConsecutivePressTimerINT(void); 
 
 
void IRSetupINT() 
{ 

//ISR 
MAP_GPIOIntRegister(GPIOA3_BASE, RisingIntHandler); 
MAP_GPIOIntTypeSet(GPIOA3_BASE, 0x80, GPIO_RISING_EDGE); 
MAP_GPIOIntClear(GPIOA3_BASE, MAP_GPIOIntStatus (GPIOA3_BASE, false)); 
MAP_GPIOIntEnable(GPIOA3_BASE, 0x80); 

 
// 
// Configure the timer in Periodic Up 
// For use with IR Data Reader 
// 
TimerConfigure(TIMERA2_BASE, TIMER_CFG_PERIODIC_UP); 
TimerEnable(TIMERA2_BASE,TIMER_A); 
TimerValueSet(TIMERA2_BASE,  TIMER_A,0); 

 
// 
// Setup timer for consecutive 
Timer_IF_Init(PRCM_TIMERA0, TIMERA0_BASE, TIMER_CFG_ONE_SHOT, TIMER_A, 0); 
Timer_IF_IntSetup(TIMERA0_BASE, TIMER_A, ConsecutivePressTimerINT); 

 
} 
 
 
static void RisingIntHandler(void) { // IR handler 

unsigned long ulStatus; 
 

ulStatus = MAP_GPIOIntStatus (GPIOA3_BASE, true); 
MAP_GPIOIntClear(GPIOA3_BASE, ulStatus); // clear interrupts on GPIOA3 



buffer[bufferCount] = TimerValueGet( TIMERA2_BASE,  TIMER_A  ); 
//Circular Buffer 
if(bufferCount < BUFFER_SIZE-1) { 

 bufferCount++; 
} else { 

 bufferCount = 0; 
} 

 
TimerValueSet(TIMERA2_BASE,  TIMER_A,0); 

} 
void DecodeIR(void) 
{ 

if(dataReady != 1) { 
 // Detects whether data is within the appropriate delay times 
 if(buffer[currentBufferLocation] < UPPER_START && buffer[currentBufferLocation] > LOWER_START ) 
 { // Start = 4.5ms 
 startSignal = 1; 
 bitCount = 0; 
 IRData = 0; 
 } else if(buffer[currentBufferLocation] < UPPER_ZERO && buffer[currentBufferLocation] > LOWER_ZERO) 
 { // Zero = 1.125ms 
 if(startSignal == 1) 
 { 
 bitCount++; 
 if(bitCount == 32) { 
 dataReady = 1; 
 } 
 } else 
 { // Bad Data or Interference 
 startSignal = 0; 
 bitCount = 0; 
 } 
 } else if(buffer[currentBufferLocation] < UPPER_ONE && buffer[currentBufferLocation] > LOWER_ONE) 
 { // One = 2.25ms 
 if(startSignal == 1) { 
 IRData += (0x1 << bitCount); 
 bitCount++; 
 if(bitCount == 32) { 
 dataReady = 1; 
 } 
 } else { // Bad Data or Interference 
 startSignal = 0; 
 bitCount = 0; 
 } 
 } else {  // If we get here the signal timed out. 
 startSignal = 0; 
 bitCount = 0; 
 } 
 // Increment currentBufferLocation and circular buffer 
 if(currentBufferLocation < BUFFER_SIZE-1) 



 { 
 currentBufferLocation++; 
 } else { 
 currentBufferLocation = 0; 
 } 

} 
} 
void ProcessIR(void) 
{ 

if(bufferCount != currentBufferLocation) { 
 DecodeIR(); 
 

} 
if(dataReady == 1) { 

 GetIRData(); 
} 

 
} 
void GetIRData(void) { 

if(ADDRESS == (IRData<<16)>>16) { 
 char data = (IRData<<8)>>24; 
 char inverted = ((~IRData)>>24); 
 if(data == inverted) { //Checks for corrupt data 
 if(data < 10) { //unsigned 
 Timer_IF_Stop(TIMERA1_BASE, TIMER_A); 
 if(data != prevData && consecutivePressFlag > 0) 
 { 
 Timer_IF_Stop(TIMERA0_BASE, TIMER_A); 
 consecutivePressFlag = 0; 
 advanceCursor(); 
 } 
 prevData = data; 
 placeCharacter( alpha[data][consecutivePressFlag]); 
 if(consecutivePressFlag < 3) { 
 consecutivePressFlag++; 
 Timer_IF_Start(TIMERA0_BASE, TIMER_A, 700); 
 } else { 
 Timer_IF_Stop(TIMERA0_BASE, TIMER_A); 
 consecutivePressFlag = 0; 
 advanceCursor(); 
 } 
 } else if(data == 0x17) { 
 prevData = 0; 
 advanceCursor(); 
 sendMessage(); 
 //Report("%s\n\r",textString); 
 } else if(data == 0x10) { 
 deleteChar(); 
 } 
 } 



} // Checks Address 
dataReady = 0; 

} 
void ConsecutivePressTimerINT(void) 
{ 

// 
// Clear the timer interrupt. 
// 
Timer_IF_InterruptClear(TIMERA0_BASE); 
consecutivePressFlag = 0; 
advanceCursor(); 

} 
 
/* 
 * TextManager.c 
 * 
 *  Created on: Feb 5, 2018 
 * Author: Kendall 
 */ 
#include "hw_types.h" 
#include "hw_memmap.h" 
#include "prcm.h" 
#include "pin.h" 
#include "uart.h" 
#include "rom.h" 
#include "rom_map.h" 
#include "uart.h" 
#include "timer.h" 
#include "timer_if.h" 
#include "Adafruit_GFX.h" 
#include "Adafruit_SSD1351.h" 
 
#include "TextManager.h" 
 
//Private Functions 
void BlinkCursor(void); 
 
// States 
static int cursorBlink = 0; 
 
// Internal Storage 
char stringMessage[160]= ""; 
int messageLength = 0; 
 
//inbox 
char inboxMessageLength = 0; 
 
void SetupCommunication() 
{ 

PRCMPeripheralClkEnable(PRCM_UARTA1, PRCM_RUN_MODE_CLK); 



PRCMPeripheralClkEnable(PRCM_UARTA0, PRCM_RUN_MODE_CLK); 
 

PinTypeUART(PIN_58, PIN_MODE_6); //UART1_TX 
PinTypeUART(PIN_59, PIN_MODE_6); //UART1_RX 

 
PinTypeUART(PIN_55, PIN_MODE_3); //UART0_TX 
PinTypeUART(PIN_57, PIN_MODE_3); //UART0_RX 

 
//UART Setup 
UARTConfigSetExpClk(UARTA1_BASE, 80000000, 115200, (UART_CONFIG_WLEN_8 | UART_CONFIG_STOP_ONE | 

UART_CONFIG_PAR_NONE)); 
UARTConfigSetExpClk(UARTA0_BASE, 80000000, 115200, (UART_CONFIG_WLEN_8 | UART_CONFIG_STOP_ONE | 

UART_CONFIG_PAR_NONE)); 
 

UARTEnable(UARTA1_BASE); 
UARTEnable(UARTA0_BASE); 
UARTDMADisable  ( UARTA1_BASE, (UART_DMA_RX | UART_DMA_TX )); 
UARTFIFODisable  ( UARTA1_BASE ) ; 

} 
 
void SetupDisplay() 
{ 

Adafruit_Init(); // Start board 
fillScreen(Color565(0,0,0)); 

 
// 
// Setup timer for blinking Cursor 
Timer_IF_Init(PRCM_TIMERA1, TIMERA1_BASE, TIMER_CFG_PERIODIC, TIMER_A, 0); 
Timer_IF_IntSetup(TIMERA1_BASE, TIMER_A, BlinkCursor); 
Timer_IF_Start(TIMERA1_BASE, TIMER_A, 500); 

 
UARTIntEnable( UARTA1_BASE,  UART_INT_RX) ; 
UARTIntRegister(UARTA1_BASE,checkInbox); 

} 
 
void BlinkCursor(void) { 
 Timer_IF_InterruptClear(TIMERA1_BASE); 
 if(cursorBlink == 0) { 
 cursorBlink = 1; 
 } else { 
 cursorBlink = 0; 
 } 
} 
 
int prevCursor = 0; 
void displayCursor() 
{ 

if(cursorBlink != prevCursor) 
{ 

 if(cursorBlink == 0) { 



 drawChar(6*(messageLength%21), 7* (messageLength/21), 0, Color565(255,255,255), Color565(0,0,0), 1); 
 prevCursor = cursorBlink; 
 } else { 
 drawChar(6*(messageLength%21), 7* (messageLength/21), 0, Color565(0,0,0), Color565(255,255,255), 1); 
 prevCursor = cursorBlink; 
 } 

} 
 
} 
 
void placeCharacter(char c) 
{ 
   Timer_IF_Stop(TIMERA1_BASE, TIMER_A); 
   stringMessage[messageLength] = c; 
   stringMessage[messageLength+1] = '\0'; 
   drawChar(6*(messageLength%21), 7* (messageLength/21), c, Color565(0,0,0), Color565(255,255,255), 1); 
} 
 
void advanceCursor() 
{ 

drawChar(6*(messageLength%21), 7* (messageLength/21), stringMessage[messageLength] , Color565(255,255,255), Color565(0,0,0), 1); 
messageLength++; 
Timer_IF_Start(TIMERA1_BASE, TIMER_A, 500); 

} 
char sendBuffer[160]; 
char sendBufferLength = 0; 
char bufferState = 0; 
 
void sendMessage() 
{ 

if(messageLength > 0) { 
 int i; 
 for(i = 0; i< messageLength; i++) 
 { 
 drawChar(6*(i%21), (7* (i/21)), 0, Color565(255,255,255), Color565(0,0,0), 1); 
 } 
 
 for(i =0; i < messageLength;i++) 
 { 
 while(UARTBusy( UARTA1_BASE )); 
 UARTCharPut(UARTA1_BASE,stringMessage[i]); 
 } 
 UARTCharPut(UARTA1_BASE,'\0'); 
 messageLength = 0; 
 stringMessage[0] = 0; 

} 
} 
 
char inboxMessage[160]; 
char messageReady = 0; 



char prevMessageLength = 0; 
void checkInbox(){ 

UARTIntClear (UARTA1_BASE,UART_INT_RX); 
while(UARTCharsAvail( UARTA1_BASE )) 
{ 

 char c = UARTCharGet(UARTA1_BASE); 
 if(c == '\0') { 
 messageReady = 1; 
 } else { 
 inboxMessage[inboxMessageLength] = c; 
 inboxMessageLength++; 
 } 
 } 
} 
void displayMessage() 
{ 

if(messageReady) 
{ 

 int i =0; 
 for(i=0;i<inboxMessageLength; i++) 
 { 
 drawChar(6*(i%21), (8* (i/21))+58,inboxMessage[i] , Color565(0,255,255), Color565(0,0,0), 1); 
 } 
 for(i = inboxMessageLength;i<=prevMessageLength; i++) 
 { 
 drawChar(6*(i%21), (8*(i/21))+58, 0 , Color565(255,255,255), Color565(0,0,0), 1); 
 } 
 messageReady = 0; 
 prevMessageLength = inboxMessageLength; 
 inboxMessageLength = 0; 

} 
 
} 
void deleteChar() 
{ 

drawChar(6*(messageLength%21), 7* (messageLength/21), 0, Color565(255,255,255), Color565(0,0,0), 1); 
messageLength--; 
Timer_IF_Start(TIMERA1_BASE, TIMER_A, 500); 

} 
 
// Standard includes 
#include <stdio.h> 
 
// Driverlib includes 
#include "hw_types.h" 
#include "hw_ints.h" 
#include "hw_memmap.h" 
#include "hw_common_reg.h" 
#include "interrupt.h" 
#include "hw_apps_rcm.h" 



#include "prcm.h" 
#include "rom.h" 
#include "rom_map.h" 
#include "prcm.h" 
#include "gpio.h" 
#include "utils.h" 
#include "spi.h" 
 
// Common interface includes 
#include "uart_if.h" 
#include "timer.h" 
#include "timer_if.h" 
#include "pinmux.h" 
#include "Adafruit_GFX.h" 
#include "Adafruit_SSD1351.h" 
#include "TextManager.h" 
#include "IRDecoder.h" 
 
#define BUFFER_SIZE 100 
 
//Pulse Count Upper and Lower limits to account for timing inaccuracies 
#define LOWER_START 288000 // 20% margin 
#define UPPER_START 432000 // 20% margin 
#define LOWER_ZERO  72000 
#define UPPER_ZERO  108000 
#define LOWER_ONE   144000 
#define UPPER_ONE   216000 
#define ADDRESS 0xbf40 
 
//***************************************************************************** 
// GLOBAL VARIABLES -- Start 
//***************************************************************************** 
extern void (* const g_pfnVectors[])(void); 
 
static void BoardInit(void); 
 
//***************************************************************************** 
//! Board Initialization & Configuration 
//! 
//! \param  None 
//! 
//! \return None 
//***************************************************************************** 
static void 
BoardInit(void) { 

MAP_IntVTableBaseSet((unsigned long)&g_pfnVectors[0]); 
 

// Enable Processor 
// 
MAP_IntMasterEnable(); 



MAP_IntEnable(FAULT_SYSTICK); 
 

PRCMCC3200MCUInit(); 
} 
//**************************************************************************** 
//! Main function 
//! 
//! \param none 
//! 
//! \return None. 
//**************************************************************************** 
int main() { 
 

BoardInit(); 
 

PinMuxConfig(); 
SetupCommunication(); 

 
InitTerm(); 

 
ClearTerm(); 

 
Message("\t\t****************************************************\n\r"); 
Message("\t\t\tIR Remote Decoder\n\r"); 
Message("\t\t\tConfigured for remote control code 1156\n\r"); 
Message("\t\t\tPress any button 0 - 9, ENTER, and MUTE\n\r"); 
Message("\t\t ****************************************************\n\r"); 
Message("\n\n\n\r"); 
SetupDisplay(); 
IRSetupINT(); 

 
 

while (1) { 
 ProcessIR(); 
 displayMessage(); 
 displayCursor(); 

} 
 
 
} 
 
 
 


