
DTMF Texting Over an Asynchronous Serial Link
Laboratory 4 - EEC 172
Kendall Lui and Mary Florek
2/27/18

INTRODUCTION
In recent years it has become more and more common to see
audio inputs used in embedded system designs. Thus, it is
becoming important to learn how to decode and characterize
audio signals. A common audio input is the dual-tone
multi-frequency (DTMF) signal, which generates a different
tone for the different buttons pressed on a receiver. In this
lab, we explored ways to integrate these tones into the
texting system developed in Lab 3.

GOALS
The goal of this lab was to develop a system that would take
a DTMF input from a microphone amplifier, convert the
signal from analog to digital using an ADC converter, and
then decode it into characters that would be displayed on the
OLED screen. This task would involve using many concepts
that were developed in Lab 3, such as polling, interrupts, and
timers. In addition, we were to develop new skills including
interfacing the SPI protocol to communicate with an external
ADC device, and decoding a signal received by a
microphone amplifier.

METHODS

The first step in implementing this system was to set up all
the connections between the external components. The
OLED was connected in the same way it was in Lab 3, as
its function remained the same. The new components we
needed to connect in this lab was the microphone, ADC
and voltage regulator.

The microphone we used had a very delicate output signal
that was easily corrupted by noise on the power line. To
combat this issue, we needed to attach the microphone to
the cleanest possible voltage signal. So we connected the
microphone directly to the 3.3V source on the board and
moved the OLED power source to the 5V pin. However,
the OLED requires only 3.3V, so we had to attach a

voltage regulator. This brought the 5V supply down to the
necessary 3.3V for powering the OLED. The OLED and
the voltage regulator were grounded to one Launchpad
ground pin, and the microphone and ADC were connected
to a different ground pin. This again, was to help mitigate
corruption to the microphone.

Connecting the rest of the microphone’s pins was
relatively simple. We wanted the output gain to be 50dB to
reduce noise on the output signal, so we tied the gain pin
to ground. The A/R pin (Attack and Release Ratio) is used
to control the ratio between the time it takes the
microphone to turn on (fading in) and the time it takes to
turn off (fading out). A release time of 120 ms is generally
the best option for a DTMF system, so to ensure this ratio,
we tied the A/R pin to ground.

The final step of the hardware setup for this project was
connecting the analog/digital converter. The ADC would
take an input from the output of the microphone, convert
the signal from analog to digital and then send the digital
output to a GPIO pin for decoding. This GPIO pin was
chosen to be separate from the GPIO used by the OLED so
that the two devices could be accessed separately.

After the hardware setup was complete, the next step was
to implement the software. In Lab 3 we implemented two
separate header and source files one was designed to
implement the IR remote typing and the other was
designed for the UI and message communication. This
modularization of our code reduced the amount of code
needed for this Lab we simply needed to implement a new
typing method and link it to the previously implemented
text messenger code.

In order to implement the typing portion we needed to
understand how DTMF keypads work. There are two
groups of frequencies (697 Hz, 770 Hz, 852 Hz, 941 Hz)

corresponding to a row and (1209 Hz, 1336 Hz, 1477 Hz,
1633 Hz) corresponding to a column on the keypad. Each
key then makes two frequencies when pressed. By
determining which dominating frequencies are present we
can lookup the appropriate number that was pressed.

Using the ADC we use an interrupt to sample the
microphone at 16 kHz. We setup a timer that called a
sampling function which simply took in an ADC value.
We kept this in a buffer with a length of 410 samples. To
do this we used SPI to request data from the ADC. The
ADC is a 10 bit ADC. This meant we needed to read from
the SPI twice since the SPI was setup to read only 8 bits.

After sampling the buffer was processed using the
Goertzel algorithm to detect the if one of the row
frequencies was present. The Goertzel algorithm was
implemented according to the a source found on
embedded.com . We precalculated coefficients for each 1

frequency and kept them in an array called freqCoeffTable.
This reduced the actual calculations that we needed.

Upon completion of sampling, timer interrupts for
sampling were disabled. The goertzel was run on the
buffer for each row frequency. To determine whether a
frequency was in the sample we used a simple threshold
test based on each desired frequency. If the frequency was
present we continued to determine if a column frequency
was present. This reduced calculation time. We then
followed the same procedure for Lab 3 by creating a timer
that determined if the button was pressed multiple times
during a certain time interval to change the letter. The
characters were then placed in a string in the TextManager
with enter being used for the sendmessage(). We used the
‘*’ character for send and ‘#’ character for delete.

DISCUSSION
We ran into a problem wiring the ADC correctly, it turned
out that the ADC was fried and upon receiving a new ADC
the microphone worked. We then ran into problems with

1
https://www.embedded.com/design/configurable-systems/
4024443/The-Goertzel-Algorithm

reading the ADC. After reading the datasheets and looking
at the section 5 we realized we needed to do bit shift
operators on the input data since some of the bits were
garbage bits.

The last hurdle was implementing the Goertzel function.
We used the Matlab implementation of the Goertzel
function to understand how to code our own Goertzel
function. We then compared the data from the Matlab
implementation and ours to verify that it was working
properly. This then needed to be converted into C code
which was easier than expected.

CONCLUSION
This lab was an interesting and challenging continuation of
all the skills learned in Lab 3.
In addition we learned a lot of new skills through decoding
audio signals to represent the buttons pressed, and then
using this information to send messages between the two
Launchpads. In the end we successfully managed to
complete our goal to implement a system that would send
text messages based on the DTMF input from a
microphone.

